Handbook on Seasonal Adjustment. 2018 edition

Handbook on Seasonal Adjustment. 2018 edition

 

Programa DEMETRA:

https://ec.europa.eu/eurostat/cros/content/download_en

 

Anuncios

Modelizar el consumo eléctrico

A partir de nos prévisions pour la température, on peut tenter de prévoir la consommation électrique. Rappelons que la série de consommation électrique ressemble à ca plot(electricite[passe,”Load”],type=”l”) On peut tenter un modèle assez simple, où la consommation à la date Y_t est fonction d’une tendance linéaire a+bt, de la position dans l’année (sous une forme…

via Modéliser la consommation électrique — Freakonometrics

ESS Guidelines on Seasonal Adjustment. Edición 2015

Eurostat ha publicat l’edició 2015 de les recomanacions per desestacionalització: ESS guidelines on seasonal adjustment “The revised ESS Guidelines on Seasonal Adjustment present both theoretical aspects and practical implementation issues in a friendly and easy to read framework, thereby addressing both experts and non-experts in seasonal adjustment. They meet the requirement of principle 7 (Sound […]

via ESS Guidelines on Seasonal Adjustment. Edició 2015 — Bloc d’estadística oficial

Descomposición temporal con R

 

Resumen:

Evaluación de diferentes funciones descomposición temporal de R. Se utiliza como ejemplo la serie mensual de las concentraciones atmosféricas de CO2 en partes por millón (ppm) en Mauna Loa (Hawai),desde 1959 a 1979 .

Las funciones de R analizadas son: decompose, stl, decomp y descomponer. En los análisis gráficos muestran una gran simulitud, tanto en lo relativo a la serie de tendencia T(t), como a la estacionalidad S(t). La serie irregular I(t) acepta la hipótesis de normalidad en los test estadísticos KS y CVM en todos los casos, pero con autocorrelación serial.

 

descomposición temporal con R

 

En R-Pub:

Descomposición temporal con R

timekit: Time Series Forecast Applications Using Data Mining

(This article was first published on business-science.io – Articles, and kindly contributed to R-bloggers) The timekit package contains a collection of tools for working with time series in R. There’s a number of benefits. One of the biggest is the ability to use a time series signature to predict future values (forecast) through data mining…

via timekit: Time Series Forecast Applications Using Data Mining — R-bloggers